Copper-Catalyzed Domino Synthesis of Quinazolinones via Ullmann-Type Coupling and Aerobic Oxidative C-H Amidation

Wei Xu,[†] Yibao Jin,[‡] Hongxia Liu,[‡] Yuyang Jiang,[‡] and and Hua Fu^{*,†}

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China, and Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. China

fuhua@mail.tsinghua.edu.cn

Received December 14, 2010

ABSTRACT

An efficient copper-catalyzed approach to quinazolinone derivatives has been developed, and the protocol uses cheap and readily available substituted 2-halobenzamides and (aryl)methanamines as the starting materials as well as economical and environmentally friendly air as the oxidant. This can be the first example of constructing N-heterocycles via sequential Ullmann-type coupling under air and aerobic oxidative C-H amidation.

Quinazolinone derivatives widely occur in natural products, $\frac{1}{2}$ and they show a wide range of useful biological and pharmacological activities.² The quinazolinone derivatives exhibit many central nervous system (CNS) effects, such as analgesic, antiparkinsonian, CNS depressant, and CNS stimulant activities; they also act as psychotropic, hypnotic, cardiotonic, and antihistamine agents³ and possess cardiovascular activity (including antihypertensive, antiarrhymic, vasodilatory, and lipid-lowering effects) and antiinflammatory activity (including inhibition of cyclooxygenase activity and leukocyte function).^{3,4} They are also potent antibacterial, antifungal, antiviral, antimycobacterial, and antimalarial agents and possess anthelmintic activity.5 Quinazolinone derivatives are used as inhibitors of various enzymes, and these enzymes include

ORGANIC **LETTERS**

2011 Vol. 13, No. 6 1274–1277

[†] Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua

Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University.

^{(1) (}a) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1997, 46, 541. (b) Yoshida, S.; Aoyagi, T.; Harada, S.; Matsuda, N.; Ikeda, T.; Naganawa, H.; Hamada, M.; Takeuchi, T. J. Antibiot. 1991, 44, 111. (c) Deng, Y.; Xu, R.; Ye, Y. J. Chin. Pharm. Sci. 2000, 9, 116. (d) Wattanapiromsakul, C.; Forster, P. I.; Waterman, P. G. Phytochemistry 2003, 64, 609.

^{(2) (}a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893. (b) Mhaske, S. B.; Argade, N. P. Tetrahedron 2006, 62, 9787 and references cited therein.

⁽³⁾ Sinha, S.; Srivastava, M. Prog. Drug Res. 1994, 43, 143.

⁽⁴⁾ de Laszlo, S. E.; Quagliato, C. S.; Greenlee, W. J.; Patchett, A. A.; Chang, R. S. L.; Lotti, V. J.; Chen, T.-B.; Scheck, S. A.; Faust, K. A.; Kivlighn, S. S.; Schorn, T. S.; Zingaro, G. J.; Siegl, P. K. S. J. Med. Chem. 1993, 36, 3207.

⁽⁵⁾ Liverton, N. J.; Armstrong, D. J.; Claremon, D. A.; Remy, D. C.; Baldwin, J. J.; Lynch, R. J.; Zhang, G.; Gould, R. J. Bioorg. Med. Chem. Lett. 1998, 8, 483.

⁽⁶⁾ Zhang, W.; Mayer, J. P.; Hall, S. E.; Weigel, J. A. J. Comb. Chem. 2001, 3, 255.

⁽⁷⁾ Witt, A.; Bergman, J. Curr. Org. Chem. 2003, 7, 659 and references cited therein.

⁽⁸⁾ For selected examples, see: (a) Griess, P. Ber 1869, 2, 415. (b) Griess, P. Ber 1878, 11, 1985. (c) von Niementowski, S. J. Prakt. Chem. 1895, 51, 564. (d) Liu, J.-F.; Ye, P.; Zhang, B.; Bi, G.; Sargent, K.; Yu, L.; Yohannes, D.; Baldino, C. M. J. Org. Chem. 2005, 70, 6339. (e) Liu, J.- F.; Kaselj, M.; Isome, Y.; Ye, P.; Sargent, K.; Sprague, K.; Cherrak, D.; Wilson, C. J.; Si, Y.; Yohannes, D.; Ng, S.-C. J. Comb. Chem. 2006, 8, 7. (f) Roy, A. D.; Subramanian, A.; Roy, R. J. Org. Chem. 2006, 71, 382. (g) Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. J. Org. Chem. 2005, 70, 6941. (h) Kamal, A.; Reddy, K. S.; Prasad, B. R.; Babu, A. H.; Ramana, A. V. Tetrahedron Lett. 2004, 45, 6517. (i) Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773.

monoamine oxidase, aldose reductase, tumor necrosis factor α , and thymidylate synthase.^{5,6} Therefore, they are interesting as structural scaffolds and have been assigned as privileged structures in drug development.^{2a} Many methods for syntheses of quinazolinone derivatives^{2,7,8} have been developed; however, ortho-amino or ortho-nitro benzoic acid derivatives are usually used as the starting materials, and they are not readily available or are difficult to prepare. Recently, copper-catalyzed Ullmann N-arylations have made great progress, $\frac{9}{2}$ and the *N*-arylation strategy has been used to make N-heterocycles.¹⁰ We have also developed some efficient methods for copper-catalyzed cross couplings¹¹ and synthesis of N-heterocycles.¹² However, to the best of our knowledge, there is no example of constructing N-heterocycles via sequential Ullmanntype coupling under air together with aerobic oxidative C-H amidation. Herein, we report a simple, practical, and efficient copper-catalyzed strategy for synthesis of quinazolinone derivatives through cascade reactions of substituted 2-halobenzamides and (aryl)methanamines under air without the addition of any ligand or additive.

Initially, 2-iodobenzamide and benzylamine were used as the model substrates to optimize reaction conditions including catalysts, bases, solvents, and reaction temperatures under air (1 atm). As shown in Table 1, five copper catalysts (0.1 equiv) were tested with 3 equiv of K_2CO_3 (relative to amount of 2-iodobenzamide) as the base and DMSO as the solvent at 110 $^{\circ}$ C (entries 1-5), and CuBr provided the highest yield (entry 2). Other bases, Cs_2CO_3 , Na_2CO_3 , and K_3PO_4 (entries 6-8), were screened, and

Table 1. Copper-Catalyzed Cascade Coupling of 2-Iodobenzamide with Benzylamine To Form 2-Phenylquinazolin-4(3H) one under Air: Optimization of Conditions^a

^a Reaction conditions: 2-iodobenzamide (0.2 mmol), benzylamine (0.4 mmol), catalyst (0.02 mmol), base (0.6 mmol), solvent (2 mL) under air. ^b Isolated yield. ^c Under nitrogen atmosphere (extrusion of air).

 K_2CO_3 showed the best activity (compare entries 2, 6–8). The effect of solvents was also investigated, and DMSO was the optimal solvent (compare entries 2 and $9-12$). We attempted different reaction temperatures (entries $13-15$), and 110° C was the better choice. A major Ullmann-type N-arylation product, 2-(benzylamino)benzamide (4), was observed with a small amount of 2-phenylquinazolin-4(3H)-one appearing when coupling of 2-iodobenzamide with benzylamine was carried out under a nitrogen atmosphere (extrusion of air) (entry 16).

The scope of copper-catalyzed domino reactions of substituted 2-halobenzamides with (aryl)methanamines was investigated under the optimized conditions [using 10 mol% of CuBr as the catalyst, 3 equiv of K_2CO_3 as the base (relative to the amount of 2-halobenzamides), and DMSO as the solvent]. As shown in Table 2, most of the substrates examined provided good yields at $100-120$ °C. For substituted 2-halobenzamides, the aryl iodides showed higher reactivity than the corresponding bromides, and only aryl chloride containing an electron-withdrawing group could perform this domino reaction (entry 25). In general, no significant difference of reactivity was observed for the examined substituted 2-bromobenzamides and (aryl)methanamines with varied electronic properties, including electron-rich, electron-poor, and neutral substrates. The copper-catalyzed domino synthesis of quinazolinones could tolerate various functional groups including ether (entries $14-16$), a C-Cl bond (entries $17-20$), nitro (entries $21-23$, 25) in the substituted 2-halobenzamides, ether

⁽⁹⁾ For recent reviews on copper-catalyzed cross couplings, see: (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. (d) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (e) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (f) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954. For selected samples, see:(g) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727. (h) Klapars, A.; Huang, X. H.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421. (i) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684. (j) Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987. (k) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. (l) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Yoshifuji, F. Chem. Commun. **2004**, 1994. (m) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. *J. Am. Chem.* Soc. 1998, 120, 12459. (n) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453.

⁽¹⁰⁾ For recent studies on the synthesis of N-heterocycles through Ullmann-type couplings, see: (a) Martin, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 7079. (b) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802. (c) Bonnaterre, F.; Bois-Choussy,M.; Zhu, J. Org. Lett. 2006, 8, 4351. (d) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem., Int. Ed. 2007, 46, 2598. (e) Chen, Y.; Xie, X.; Ma, D. J. Org. Chem. 2007, 72, 9329. (f) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org. Chem. 2007, 72, 1510. (g) Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Org. Lett. 2008, 10, 2761. (h) Altenhoff, G.; Glorius, F. Adv. Synth. Catal. 2004, 346, 1661.

^{(11) (}a) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2005, 70, 8107. (b) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.-Eur. J. 2006, 12, 3636. (c) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2007, 72, 672. (d) Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2006, 348, 2197.

^{(12) (}a) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2009, 48, 348. (b) Huang, C.; Fu, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Commun. 2008, 6333. (c) Yang, D.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2008, 73, 7841. (d) Yang, D.; Liu, H.; Yang, H.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2009, 351, 1999. (e) Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469.

Table 2. Copper-Catalyzed Domino Synthesis of Quinazolinone Derivatives via Ullmann-Type Coupling and Aerobic Oxidative C-H Activation^{a}

^a Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), CuBr (0.02 mmol), K₂CO₃ (0.6 mmol), DMSO (2 mL) under air. b Isolated yield.

(entries 3, 11, and 18), a C-Cl bond (entries 4 and 22), a naphthalene ring (entry 5), and heterocycles containing nitrogen, oxygen, or sulfur (entries 6-8, 12, 13, 16, and 20) in the arylmethanamines.

Scheme 1. (A) Copper-Catalyzed Ullmann-Type Coupling of 1a with $2a$ under N_2 ; (B) Copper-Catalyzed Aerobic Oxidative Domino Reaction of 4; (C) Copper-Catalyzed Aerobic Oxidative Cascade Coupling of 5 with 6

In order to explore the reaction mechanism for synthesis of quinazoline derivatives, the following control experiments were performed as shown in Scheme 1. Copper-catalyzed coupling of 2-iodobenzamide (1a) with benzylamine (2a) provided 2-(benzylamino)benzamide (4) in 70% yield under a nitrogen atmosphere (extrusion of air), and only a small amount of quinazoline was observed (see Scheme 1A and entry 16 in Table 1). 4 transformed into 2-phenylquinazolin-4(3H) one (3a) in 84% yield under our standard conditions (see Scheme 1B). Copper-catalyzed cascade coupling of 2-aminobenzamide (5) with benzaldehyde (6) provided 3a in 81% yield (see Scheme 1C).

A possible mechanism for synthesis of quinazolinone derivatives is proposed in Scheme 2 according to the results above. Copper-catalyzed Ullmann-type coupling of substituted 2-halobenzamide with (aryl)methanamine first provides a N-arylation product (I). Interestingly, no ligand or additive was required in the reaction system, and the result showed an *ortho*-substituent effect^{12,13} of the amide group in 1 during N-arylation. Copper-catalyzed aerobic oxidation of I affords intermediate II containing a $C=N$ bond, and intramolecular nucleophilic addition of the amide to the $C=N$ bond in II gives III.

Scheme 2. Possible Mechanism for Copper-Catalyzed Aerobic Oxidative Domino Synthesis of Quinazolinones

Finally, further aerobic oxidation of III provides the target product 3a.

In summary, we have developed a simple and efficient copper-catalyzed method for the synthesis of quinazolinone derivatives. The protocol uses cheap and readily available CuBr as the catalyst, substituted 2-halobenzamides and (aryl)methanamines as the starting materials, and economical and environmentally friendly air as the oxidant; the domino reactions underwent sequential copper-catalyzed Ullmann-type coupling, aerobic oxidation, and an intramolecular nucleophilic addition process without the addition of any ligand and additive, and the corresponding quinazolinone derivatives were obtained in good yields. This can be the first example of constructing N-heterocycles via sequential Ullmann-type coupling and aerobic oxidative C-H amidation under air. The method is of high tolerance toward various functional groups in the substrates, and it will attract much attention in academic and industrial research.

Acknowledgment. The authors wish to thank the National Natural Science Foundation of China (Grant No. 20972083) and the Ministry of Science and Technology of China (2009ZX09501-004) for financial support.

Supporting Information Available. Synthetic procedures, characterization data, and ¹H, ¹³C NMR spectra of these synthesized compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(13) (}a) Nicolaou, K. C.; Boddy, C. N. C.; Natarajar, S.; Yue, T.-Y.; Li, H.; Bräse, S.; Ramanjulu, J. M. J. Am. Chem. Soc. 1997, 119, 3421. (b) Cai, Q.; Zou, B.; Ma, D. Angew. Chem., Int. Ed. 2006, 45, 1276.