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ABSTRACT

An efficient copper-catalyzed approach to quinazolinone derivatives has been developed, and the protocol uses cheap and readily available
substituted 2-halobenzamides and (aryl)methanamines as the starting materials as well as economical and environmentally friendly air as the
oxidant. This can be the first example of constructing N-heterocycles via sequential Ullmann-type coupling under air and aerobic oxidative C-H
amidation.

Quinazolinone derivatives widely occur in natural
products,1 and they show a wide range of useful biological
and pharmacological activities.2 The quinazolinone deri-
vatives exhibit many central nervous system (CNS) effects,
such as analgesic, antiparkinsonian, CNS depressant, and
CNS stimulant activities; they also act as psychotropic,
hypnotic, cardiotonic, and antihistamine agents3 and pos-
sess cardiovascular activity (including antihypertensive,
antiarrhymic, vasodilatory, and lipid-lowering effects)
and antiinflammatory activity (including inhibition of

cyclooxygenase activity and leukocyte function).3,4 They
are also potent antibacterial, antifungal, antiviral, antimy-
cobacterial, and antimalarial agents and possess anthel-
mintic activity.5 Quinazolinone derivatives are used as
inhibitors of various enzymes, and these enzymes include
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monoamine oxidase, aldose reductase, tumor necrosis
factor R, and thymidylate synthase.5,6 Therefore, they are
interesting as structural scaffolds and have been assigned
as privileged structures in drug development.2a Many
methods for syntheses of quinazolinone derivatives2,7,8

have been developed; however, ortho-amino or ortho-nitro
benzoic acid derivatives are usually used as the starting
materials, and they are not readily available or are difficult
to prepare. Recently, copper-catalyzed Ullmann N-aryla-
tions have made great progress,9 and the N-arylation
strategy has been used to makeN-heterocycles.10 We have
also developed some efficient methods for copper-cata-
lyzed cross couplings11 and synthesis of N-heterocycles.12

However, to the best of our knowledge, there is no example
of constructing N-heterocycles via sequential Ullmann-
type coupling under air together with aerobic oxidative
C-Hamidation.Herein, we report a simple, practical, and
efficient copper-catalyzed strategy for synthesis of quina-
zolinone derivatives through cascade reactions of substi-
tuted 2-halobenzamides and (aryl)methanamines under air
without the addition of any ligand or additive.
Initially, 2-iodobenzamide and benzylamine were used

as the model substrates to optimize reaction conditions
including catalysts, bases, solvents, and reaction tempera-
tures under air (1 atm). As shown in Table 1, five copper
catalysts (0.1 equiv) were tested with 3 equiv of K2CO3

(relative to amount of 2-iodobenzamide) as the base and
DMSO as the solvent at 110 �C (entries 1-5), and CuBr
provided the highest yield (entry 2). Other bases, Cs2CO3,
Na2CO3, and K3PO4 (entries 6-8), were screened, and

K2CO3 showed the best activity (compare entries 2, 6-8).
The effect of solvents was also investigated, and DMSO
was the optimal solvent (compare entries 2 and 9-12).We
attempted different reaction temperatures (entries 13-15),
and 110 �C was the better choice. A major Ullmann-type
N-arylation product, 2-(benzylamino)benzamide (4), was
observed with a small amount of 2-phenylquinazolin-
4(3H)-one appearing when coupling of 2-iodobenzamide
with benzylamine was carried out under a nitrogen atmo-
sphere (extrusion of air) (entry 16).
The scope of copper-catalyzed domino reactions of

substituted 2-halobenzamides with (aryl)methanamines
was investigated under the optimized conditions [using 10
mol%ofCuBr as the catalyst, 3 equiv ofK2CO3as the base
(relative to the amount of 2-halobenzamides), and DMSO
as the solvent]. As shown in Table 2, most of the substrates
examined provided good yields at 100-120 �C. For sub-
stituted 2-halobenzamides, the aryl iodides showed higher
reactivity than the corresponding bromides, and only aryl
chloride containing an electron-withdrawing group could
perform this domino reaction (entry 25). In general, no
significant difference of reactivity was observed for the
examined substituted 2-bromobenzamides and (aryl)me-
thanamines with varied electronic properties, including
electron-rich, electron-poor, and neutral substrates. The
copper-catalyzed domino synthesis of quinazolinones
could tolerate various functional groups including ether
(entries 14-16), a C-Cl bond (entries 17-20), nitro (ent-
ries 21-23, 25) in the substituted 2-halobenzamides, ether

Table 1. Copper-Catalyzed Cascade Coupling of 2-Iodobenza-
mide with Benzylamine To Form 2-Phenylquinazolin-4(3H)-
one under Air: Optimization of Conditionsa

entry cat. base solvent temp (�C) yield (%)b

1 CuI K2CO3 DMSO 110 61

2 CuBr K2CO3 DMSO 110 75

3 Cu2O K2CO3 DMSO 110 56

4 Cu(OAc)2 K2CO3 DMSO 110 70

5 CuO K2CO3 DMSO 110 trace

6 CuBr Cs2CO3 DMSO 110 42

7 CuBr Na2CO3 DMSO 110 69

8 CuBr K3PO4 DMSO 110 48

9 CuBr K2CO3 DMF 110 12

10 CuBr K2CO3 ethylene

glycol

110 18

11 CuBr K2CO3 dioxane 110 0

12 CuBr K2CO3 toluene 110 0

13 CuBr K2CO3 DMSO 70 0

14 CuBr K2CO3 DMSO 90 42

15 CuBr K2CO3 DMSO 130 70

16 CuBr K2CO3 DMSO 110 11c

aReaction conditions: 2-iodobenzamide (0.2 mmol), benzylamine
(0.4 mmol), catalyst (0.02 mmol), base (0.6 mmol), solvent (2 mL) under
air. b Isolated yield. cUnder nitrogen atmosphere (extrusion of air).
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(entries 3, 11, and 18), a C-Cl bond (entries 4 and 22), a

naphthalene ring (entry 5), and heterocycles containing

nitrogen, oxygen, or sulfur (entries 6-8, 12, 13, 16, and

20) in the arylmethanamines.

Table 2. Copper-CatalyzedDomino Synthesis of QuinazolinoneDerivatives viaUllmann-TypeCoupling andAerobic Oxidative C-H
Activationa

aReaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), CuBr (0.02 mmol), K2CO3 (0.6 mmol), DMSO (2 mL) under air. b Isolated yield.
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In order to explore the reaction mechanism for synth-
esis of quinazoline derivatives, the following control
experiments were performed as shown in Scheme 1.
Copper-catalyzed coupling of 2-iodobenzamide (1a)
with benzylamine (2a) provided 2-(benzylamino)-
benzamide (4) in 70% yield under a nitrogen atmosphere
(extrusion of air), and only a small amount of quinazo-
line was observed (see Scheme 1A and entry 16 in
Table 1). 4 transformed into 2-phenylquinazolin-4(3H)-
one (3a) in 84% yield under our standard conditions (see
Scheme 1B). Copper-catalyzed cascade coupling of
2-aminobenzamide (5) with benzaldehyde (6) provided
3a in 81% yield (see Scheme 1C).
A possible mechanism for synthesis of quinazolinone

derivatives is proposed in Scheme 2 according to the
results above. Copper-catalyzed Ullmann-type coupling
of substituted 2-halobenzamide with (aryl)methanamine
first provides aN-arylation product (I). Interestingly, no
ligand or additive was required in the reaction system,
and the result showed an ortho-substituent effect12,13 of
the amide group in 1 during N-arylation. Copper-cata-
lyzed aerobic oxidation of I affords intermediate II

containing a CdN bond, and intramolecular nucleophi-
lic addition of the amide to the CdN bond in II gives III.

Finally, further aerobic oxidation of III provides the
target product 3a.
In summary, we have developed a simple and efficient

copper-catalyzedmethod for the synthesis of quinazolinone
derivatives. The protocol uses cheap and readily available
CuBr as the catalyst, substituted 2-halobenzamides and
(aryl)methanamines as the startingmaterials, and econom-
ical and environmentally friendly air as the oxidant; the
domino reactions underwent sequential copper-catalyzed
Ullmann-type coupling, aerobic oxidation, and an intra-
molecular nucleophilic addition process without the addi-
tion of any ligand and additive, and the corresponding
quinazolinone derivatives were obtained in good yields.
This can be the first example of constructing N-hetero-
cycles via sequential Ullmann-type coupling and aerobic
oxidativeC-Hamidation under air. Themethod is of high
tolerance toward various functional groups in the sub-
strates, and it will attract much attention in academic and
industrial research.
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Scheme 2. Possible Mechanism for Copper-Catalyzed Aerobic
Oxidative Domino Synthesis of Quinazolinones

Scheme 1. (A) Copper-CatalyzedUllmann-Type Coupling of 1a
with 2a under N2; (B) Copper-Catalyzed Aerobic Oxidative
Domino Reaction of 4; (C) Copper-Catalyzed Aerobic Oxida-
tive Cascade Coupling of 5 with 6
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